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On knots in a model for the adsorption of ring polymers 

Carlo Vanderzande 
Department Wishnde Natuukunde Infomatic+ Limburgs Universitair Cenr". 3590 
Diepenbeek Belgium 

Received 19 December 1994 

Abstract. The occurence of knots in a model of a ring polymer interacting with a surface 
is considered. The p ~ l y m e ~  is described by a self-avoiding polygon (SAP)  and interacts with 
the surface through a sholt-range interaction. It is proven rigorously that, for all non-zem 
temperatures, all except exponentially few SAR contain a knot. We also show that the average 
knot complexity grows at least linearly with the length of the polymer, for sufliciently long 
polymers. 

1. Introduction 

The statistical mechanics of polymers has wimessed great progress ever since the discovery 
by de Gennes (1972) of a relation between physical quantities of long polymer chains and 
the properties of a ferromagnet neat its nitical temperature. This relation has led to a rather 
good and complete knowledge of the critical properties of linear polymers, especially in two 
dimensions where Coulomb gas and conformal invariance techniques have yielded whole 
classes of exactly known exponents (for an innoduction, see e.g. Duplantier 1990). 

Looking for new and interesting problems, researchers in the statistical mechanics of 
polymers have turned their attention in recent years to the investigation of geometrical and 
topological properties of polymers. Such quantities are especially relevant in the study of 
certain biopolymers such as DNA. One of the most interesting subjects in this respect is the 
occurence of knots in ring polymers. 

When such a polymer is immersed in a good solvent, it can be modelled conveniently as 
a self-avoiding polygon on a lattice, e.g. the cubic lattice Z3. The degree of polymerization 
of the polymer then corresponds to the number of vertices n of this polygon. As usual in 
equilibrium statistical mechanics, time averages over the dynamical history of the polymer 
are replaced by ensemble averages over the set of all polygons with n vertices. Each such 
polygon can be considered as 'an embedding of the circle in Z3 and so one can ask the 
question whether or not such a polygon is knotted. A polygon is said to be unknotted 
when it can be deformed in a continuous way into a circle. A very important result in this 
respect was obtained by Sumners and Whittington (1988) who showed that the fraction of 
unknotted polygons goes to zero exponentially fast ,when n -+ CO. Stated more precisely, 
if p,, is~the number of n-step polygons and p t  is the number of unknotted n-step polygons, 
these authors showed that there exists a strictly positive constant (Y such that 

0 

-=  pn  exp (-an + o(n)) .  (1.1) 
PI2 

There exist numerical estimates of the constant (Y appearing in (1.1) (Janse van Rensburg 
and Whittington 1990). 
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i t  is not enough to know that long polymers are knotted; one also wants to study how 
the ‘complexity’ of a knot changes with n. This problem was studied by Soteros etul(1992) 
who introduced the concept of a good measure of knot complexity. These authors where 
then able to show that for n large enough, all but exponentially few self-avoiding polygons 
have a complexity which is greater then Sn where S is some constant. Following this 
pioneering work the knotting properties of self-avoiding polygons were studied in various 
circumstances such as when the polygon is confined in a slab (Tesi ut al 1994), or when 
attractive interactions between the monomers are introduced and the polymer collapses into 
a globule at low temperatures (Janse van Rensburg and Whittington 1990). 

In this paper we study how the knot probability and complexity behave when two 
monomers of the polymer are attached to a surface, and when in addition the monomers 
can gain energy by adsorbing onto this surface. It is well known by now that in this case 
there exists a critical temperature below which a macroscopic fraction of the monomers are 
adsorbed on the surface (De’Bell and Lookman 1993). When the temperature approaches 
zero all monomers should be adsorbed on the surface and, as a planar self-avoiding curve 
is always unknotted, one thus expects that the knot probability will go to zero. In this 
paper we study h is  model using mathematically rigorous techniques. We will be able to 
prove that the fraction of unknotted polygons (defined with appropriate Boltzmann weights 
involving the inverse temperature B and the number of monomers in the surface) still goes 
to zero exponentially fast with a constant a(B) that is strictly positive (when B < CO). In 
a forthcoming paper we will present numerical results for the function a(B). 

This paper is organized as follows. In section 2 we introduce properly defined free 
energies for the present model and study some of their simple properties. In section 3 we 
study the Legendre transforms of these free energies which in section 4 will be used to 
prove the main result stated above. In section 5, we study how the complexity of knots 
changes when the temperature in OUT model is varied. Finally, in section 6 we present some 
concluding remarks. 

2. The free energies F(@) and FO@) 

L.1. 

We will work on the cubic lattice Z3. The (integer) coordinates of the vertices of this lattice 
will be denoted   by w = (x .  y, z). A self-avoiding walk (SAW) of n-steps is a sequence 
(WO, w ~ ,  ... w,J of (n+l)  distinct vertices, such that lwi-wi-,l = 1, 1 < i < n. A special 
subset of the set of all self-avoiding walks is formed by the n-step self-avoiding circuits 
(SAC). These are n-step SAWS for which Iwn - w01 = 1. In fact, any cyclic permutation of 
the vertices in a SAC, the reverse permutation of the vertices and any cyclic permutation of 
the reverse permutation of the vertices give rise to the same geometrical object. This set of 
2(n + 1) SACS will be called an n-step self-avoiding polygon (SAP). 

The SAPS which we have defined in this way are not uniquely determined. From now 
on, by a SAP we will always mean a whole equivalence class of polygons whose edges can 
be put onto one another after any translation using a vector ZI = (U,, uz. 0). Throughout this 
paper we will consider SAPS that visit the origin (0, 0, 0) and for which zi 0.0 < i < n. 

A contact is defined as a vertex of the SAP with z = 0. We denote by p,,(ni) the number 
of inequivalent n-step polygons with m + 1 contacts (1 < m < n). 

Each SAP can be considered as an embedding of the circle in Z’. A SAP is then said to 
be unknotted if it is ambient isotopic to the unknot. We will denote by p f ( m )  the number 
of inequivalent n-step unknotted polygons with m + 1 contacts that pass through the origin. 
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We can now introduce the partition functions Z,,(p) and Z;(p) as 

ZAP) = pn(m)  exp (Bm) (2.la) 
m 

and 

Z,%) = p,%) exp (Bm). (2.lb) 
m 

We shall, among other results, prove the following: 
(i) The limits 

1 
F(p)  = lim -logZ,(B) 

n-m n 

and 

(2.2a) 

(2.2b) 
1 ~ ' ( p )  = lim -log z.O(p) 

n-M n 

exist for all p. 
(ii) Our main result is the following theorem. 

Theorem j .  Let F(p) and Fo(,9) be as defined in (2.2); then 

4 9 )  = F ( p )  - + ( B )  > 0 vp c W .  , (2.3) 

If we introduce 

(2.4) 

which we will call 'unknot probability', then (2.2) and (2.3) imply that for large n 

PdB) = exp (-4W + o h ) )  (2.9 

i.e. unhotted polygons are exponentially rare. 
(iii) If we introduce a measure of the complexity of knots as in Soteros et al (1992), then 

we can show that for sufficiently large n, the average complexity (averaged with Boltmann 
weights as in (2.1)) of n-step SAPS grows at least linearly with n. 

2.2. 

Our first aim is to prove the existence of the limits in (2.2). The proof is a combination of 
concatenation arguments for SAPS in the bulk (see, e.g. Madras and Slade 1993) and that 
for SAWS with at least one vertex in a surface (Hmmersley et ai 1982). ' 

First we define the lexicographic ordering in Z 3 .  We say that (a,, a*, q) c (61, bz, b3) 
if for some j (1 < j < 3) we have ai = bi,Vl < i c j and aj < bj. Without loss of 
generality we will consider here the set 'P of polygons whose lexicographically smallest 
point is the origin. Next, we consider a special subset Q of 'P. To define this set, take 
the maximum value of x for any vertex of the polygon, i.e determine xmax = maxi x i .  In 
general there can be several points of the SAP in the plane x = xmax (hereafter referred to 

' 
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as the upper tangent plane). The set ‘2 then consists of those polygons for which the point 
y = z = 0 is the lexicographically smallest point in the plane x = x , , ,~ .  We will denote 
the point (x-, 0,O) by wm 

Let Q contain q:(m) unknotted polygons of n vertices and m contacts, and let 

As a first step we now prove that 

exists. 
Therefore, we pick two polygons p1 (of nl steps and ml contacts) and p~ (122 steps, m2 

contacts) in Q. We translate p2 by the vector ( x k  + 1,0,0) where in an obvious notation 
XL = maxiGp, x i .  Now there are two possibilities. To discriminate these one has to realize 
that in p1 there are two bonds going to w,. One of them will certainly be in either the 
y (I = 2) or in the z (I = 3) direction. If the polygon p2 has the bond going from the 
origin to the point er there is no problem in concatenating p1 and pz into one (n1 +nz)-step 
polygon with ml + m2 contacts. 

In the second case, when p2 does not contain er we can always add four steps (leading 
to two new contacts) to p l ,  translate pz by the extra vector el and concatenate the two 
polygons. Figure 1 shows the two possiblities of how to add these extra steps (contacts). 

Going back to the case in which the two polygons can be concatenated immediately, 
it is trivial to show that we can also add the extra stepdcontacts shown in figure 1 to the 
concatenated polygons (in fact there is a third possibility here, but it is easy to extend the 
procedure of figure 1 to that case). 

From a topological point of view concatenation amounts to a composition of knots (for 
a gentle introduction to knot theory, see Adams 1994). It is thus clear that a concatenation 
of two knotted polygons cannot give the unknot. Also notice that the concatenated polygon 
is still in 42 and has nl + n2 + 4 steps and ml + mz + 2 contacts. So, we arrive at the 
inequality 

q,O, (ml)qH,(mz) < qn01+n2+4(ml + m2 + 2). (2.7) 

Hence, 

m=4 

m=4 
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Figure 1. Rules for adding four steps (two contacts) to a polygon at wcUci. Let i, j ,  k be unit 
steps in resp. the x. y.  z directions. In (a) the crossed step is removed and replaced by the steps 
(i. k, j ,  -k. 4). In (6 )  the crossed step is removed and replaced by the steps [i, j ,  k. - j .  4). 
The full circles represent pans of rhe SAP that are not changed. 

Adding the (positive) terms in m = I ,  2,3 and nl + n2 + 4 (q,"(n - 1) = 0) shows that 

B,0,(B)fJ:2(B0 < (exp-2B)(ni f n ~  - 1)B:,+,+.,+4(B). 
Finally, we relabel the series E,", (p)  such that 

and 
a4 = a 6  = 1 

a" = B:-4(B). 

loga,,+loga,, <-2B+log(nl + n ~ - 9 ) + l o g a  n , + n i .  (2.8) 

After taking logarithms on both sides we get 

This shows that -logan is a (generalized) subadditive function of n. Because it is also 
bounded from below (a, = E,"-,(@) f Z,,-,(B) < (6exp,9)"-4), it finally follows from the 
theory of subadditive functions (see theorem 2 in Hammersley 1962) that limn-.- loga, 
exists, and that therefore limn-,m 4 log B,"(p) also exists. 
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2.3. 

The next step is to prove that 

1 1 
lim - log Z:(g) = lim - log E:(,5). 

is a subset of P it is sufficient to prove that 

n+m n n-bm n 

Since the set 

1 1 
n 

lim sup - log Z:(g) < lim - log @(g) . 
n-m n 

Consider any polygon in P and let k be its lexicographically largest point. There are 
two values of i such that this polygon contains the bond joining IC to k - ei. Take I to 
be the largest of these and denote by pf(m; k ,  I )  the number of n-step unhotted polygons 
with m contacts and k and I fixed at a particular value. The number E of possible largest 
lexicographic points satisfies 

(2.10) 

for any n. We can now concatenate two polygons with the same k and I as follows. Reflect 
one of the polygons through its upper tangent plane and then translate the polygon by one 
lattice unit in the el-direction. This operation does not change the number of contacts, nor 
whether the polygon is unhotted or not (though the topological class of the h o t  may be 
changed under reflection). We can now concatenate the two polygons in the usual way and 
will, in this way, create a polygon in e. Hence, we arrive at the following inequality: 

(2.11) 

E < (2n + I)% + 1) 

p ; , h ; k ,  I ) p : l ( m z ; k , C  $qn,+n2(ml 0 + m d .  

Z f ( B ;  k ,  I) = p:@; k ,  I )  eXp(Bm) (2.12) 

Then, if we define 
n 

m=1 

we have 
n n  

(Z:W k ,  1))’ = ~c p:(ml; k ,  I ) p : ( m ;  k ,  I)expS(ml + m d .  
m,=1 m2=1 

If we denote m = ml + m2 and use (2.11) we get 

< (2n - V k ( B ) .  

Using Cauchy’s inequality in combination with (2.10) gives 

(2.13) 
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or 

and hence 

(2.14) = l i i  -log 1 B,o(fi) I 
o-im n 

This then proves the existence of Fo(B)  (see equation (2.7.b)). In a completely similar 
way the existence of F ( B )  can he proved. 

2.4. 

We now show that F ( B )  (apd p(B)) are convex functions of B .  
consequence of Cauchy’s inequality 

This is a simple 

Indeed we have 

or 

(2.15) 

Because F ( B )  is bounded (see subsection 2.5) in any interval, this is sufficient to 
have convexity. Convexity and houndedness in turn imply that FV) and FOGS) are 
continuous, that the derivative exists almost everywhere, and that left and right derivatives 
exist everywhere and are non-decreasing functions of B. 

2.5. 

To conclude this section, we give bounds for the functions F(B)  and p(B) and show that 
Vp < 0, u(B) is a constant (and shictly positive). 

First, from Madras and Slade (1993), we know !hat 

F(B = 0) = log p3 (2.16) 
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where p3 is the d = 3 connective constant of SAWS and SAPS. Similarly if we define fi! as 

(2.17) Fo@ = 0) = l o g p ,  0 

it was shown in Tesi ef a1 (1994) that (result for the slab of width L with L + bo) 

& P 3 .  (2.18) 

Now, Vj3 < 0, we have 

(2.19) 
m 

and 

z:@) > p:(l)expB. (2.20) 

Now, notice that from any polygon of n vertices and two contacts, we can create a 
polygon of (n - 2) vertices and m (2 2) contacts, and vice versa, by shifting the surface at 
z = 0 to z = 1. This does not change the knottedness of the polygon. Thus, 

m 

Combining (2.19) and (2.20) then gives; Vj3 < 0 

z;-,~e)expj3 4 z,"(j3) < ~ , O C O ) .  
From this it immediately follows that 

P(B) = log& vj3 < 0. 

Similarly, one has 

F ( B )  = log cL3 VB < 0 

so that 

(2.21) 

(2.22) 

(2.23) 

(2 .24 

For 6 z 0, we get the following bounds on p(B). First, 

z,O(fi) 2 p,OW exp ( f in)  

or 

FO(B)  > logcL2 + B (2.25) 

where pz is the connective constant for two-dimensional SAWS and SAPS. The inequality 
(2.25) also holds for F(p) .  
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P 

Figure 2. Conjectured behaviour for the function a@). For p < 0 and for p -f m the shape 
of U shown here is exact. 

From equations (2.22) and (2.25) follows the existence of critical temperatures B," and 

FO(B)~= FO(0) vp < 6," (2.26) 

pc such that 

with 

(2.27) 

Again, a similar result holds for & 

evident upper bound for Z,(B) is 
We conclude with an upper bound for F(B) (and thus for p(j3)) and a conjecture. An 

ZAP) < (6expBY' VB > 0. (2.28) 
From equations (2.25) and (2.28) we have 

(2.29) 

Finally we conjecture 

0 < Bc < B,". (2.30) 
This conjecture is based on the fact that (2.lb) contains less terms than (2.la) and thus 

the latter sum can be expected (in the n -P CO limit) to be different from its B = 0 value 
more easily. Together with (2.3) and (2.24) this conjecture leads to the behaviour for a(/?) 
sketched in figure 2. At a, FV), and as a consequence a@) sfarts to increase. Then, at 
B," the free energy of unknotted polygons also starts to differ from its infinite temperature 
value. The maximum in U@) occurs at the point where Fo(B)  starts to increase more rapidly 
then F(6) .  At present, it is not clear at which value of the temperature this happens. The 
existence of a maximum in ~ ( p )  can also be expected on the basis of numerical work 
on polygons confined in a slab where the unknot probability is found to decrease if one 
reduces the distance between the slabs (Tesi et al 1994). One can think that increasing p is 
physically similar to confining the polymer between slabs of decreasing distance. Physically, 
the bump can be understood as follows. As soon as f3 >r pc the polymer starts to shrink 
in the direction perpendicular to the surface. Confining the polymer in less space increases 
its knottedness. In a collapse nansition this increase can continue all the way down to zero 
temperature. In the adsorption case, however, the polymer has the ability to extend in the 
direction parallel to the plane and to decrease thereby its knot probability and decrease its 
energy. It is the competition between these two effects which probably leads to the bump 
in figure 2. 
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We are currently investigating numerically the conjecture (2.30) and the behaviour 
of a). 

3. The Legendre transforms +(p) and 

3.1. 

A crucial role in the following will be played by the functions @ ( p )  and bo@) which will 
be shown to be Legendre transforms of F(B) and Fo(p) ,  respectively. 

We start from (2.7). Defining 

bt(m) = b:(m) = 1 

b:(l) = b:(2) = 1 

Vm 

V n > 8 
0 bg@) = - 2) 

b:,(mdb:2(md < bg,+n2(ml +w). (3.1) 

otherwise we can rewrite (2.7) as 

Now take p to be a rational number in [O, 11 and denote by Ip  the set of all integers n 
such that pn  is an integer. Let nl and nz be in Ip .  Then equation (3.1) implies 

logb:,(pnd +logb:,(pm) < logb:l+,2(p(nl +m)). 
Because bt(m) is also bounded the following limit exists: 

1 
n-m n @O(p) = lim - log b:(pn) 

where the limit is taken through integers in I,. 
Secondly, if p and q are in [0, 11 and n is in Ip  n 4. equation (3.1) gives 

Iogb:(pn) + hb:(qn) < logb&((p + d n ) .  

If we divide by n and let n + 00 through 1, n Zq n Z(p+q)p ,we can see that 

From Hardy et ai (1934) it then follows that for all 01, B rational in [0,'1] and for all 

(3.3) 

The inequality (3.3) allows us to extend the definition (3.2) to all real p in [0,1]. We 
take @'(p) to be the continuous concave function of p that coincides with the previous 
definition of @ ( p )  at rational p .  In a completely analogous way we can, starting from 
qn(m), defining b,(m) as in the beginning of this section, define a continuous and concave 
function @ ( p )  as 

rational p and q 

rY@O(P) + B @ O ( d  < @o(w + 8 4 ) .  

(3.4) 

.In the rest of this section we will prove some important propenies of @ ( p )  and @ ( p )  
and especially their relation with F ( B )  and F0(@). 
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J.L. 

It is rather straightforward to show that 

3.3. 

In this subsection we will prove the following lemma. 

Lemma 1. 

d@ d@O lim - = lim - = -w. 
P-ldp P+I dp  

(3.5) 

Proof. Take any polygon p.  element of the set &. Let p have n vertices and n contacts. 
We will now describe a process which we call ‘trunk formation’ to make a polygon of 
n + U( vextices and n contacts starting from p. Pick k vertices of p (this can be done in 
( i )  ways). Then add vertices as follows: 

(i) If wi is a chosen vertex and none of its neighbours (along the polygon) is chosen, 
take w(+t and add the vertices wi + e 3  and wi+l + e3. 

(ii) If the vertices wi and w,+l are chosen, but none of their neighbours are, then add 
the four vertices’ w; + e3. wi + 2e3. wi+l + 2e3 and wi+l + e3 to the polygon. 

(iii) If the vertices w;, w;+I,. . . , wi+j are chosen, add the following’2j vertices to the 
walk 

wi+j-~ +e,, wi+j-l +2e3, ..., w,+j-~ + je3 

~wi+j  + je3, wi+, +.(j~- l)e3,. . . , wi+j + e3. 

Notice that in this way we have created a polygon of n + 2k vertices and n contacts 
which is still in Q, and that it is impossible to create knots by trunk formation. We thus 
arrive at the inequalities 

and 

(3.7a) 

(3.7b) 

We will continue with (3.7a) but the same calculations can be done starting from (3.7b). 
We write N = n + 2k, so that 

n 2k -- - I - -  
N N 

Defining r = k / N  we have that n = (1 - 2r)N and 

r 
1 - 2 -  

k = -  n .  
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(we will always have in mind a value of r + 0). Now, we start from (3.7a) and we let 
N + M through I,+. We get 

1 1 
lim - logqN(( 1 - ,IN) > ~ i m  ~f. [ 1 log c) + ; log qn(n)] 

N-m N N-mN n 

or 

We then use (Madras et al 1988): 

rim A log 6;) = a loga - b logb - (a - b) log (a - b) 
n-m n 

with a = 1 and b =r/(l-Zr) and get 

r 
+(l - 2r) > (1 - 2r) 

or 

- (1 -&)log (1 - &) +$(U ] 

r 1 - 3r 
@( 1) - 4(1 - 2r) < r log - + (1 - 3r)log E + 2r$( l ) .  1 - 2  

Finally, we take r + 0 

$ ( 1 ) - + ( 1 - , )  r 
I - 2r 

d@ - ( p  = 1) = lim 
dP ,-0 2r 

Then using (3.5) and 

1 - 3 r  1 - 3 r  1 
r-0 2r 1 -2r  2 
rim - log- = -- 

we get 

d@ - ( p  = 1) < --oo 
dP 

which prooves lemma 1 .  

3.4. 

In this subsection we shall prove that 

(3 .8~)  

(3.86) 
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Again we will give the proof for the unknotted case. First, from the theory of subadditive 
functions and from the definition (3.2) we have for finite n 

1 
n - logb,O(pn) < 

or 

b:(pn) < e x p n @ W  

so that 

B , ~ ( B )  = q,0(m) eBm 
m 

= e-*B &.4(m + 2) eSCm+*) 
m 

< n e-q exp~ [ ( n  + 4)  sue [4o(p)  + p p 1 1  
P 

Taking logarithms, dividing by R and sending n + 00 gives 

FO(B) < sup [ @ O W  + BPI . 
, 

P 

The reverse inequality is obtained as follows: 

Z,OW = C p f ( m ) e B m  2 C4z(m)ePm 
m m 

> q f ( p n )  eapn . 

The last inequality holds for all n in 1, (for all rational p). Consequently, 

logzf(fi) > logq,0(pn) + ~ p n  

or 

2 @'(p) + BP V p  E Q . (3.9) 

Hence equation (3.9) holds for all p E [0, 11 as a consequence of the way in which we 
constructed $"(p). Therefore 

Fa@) > SUP[q5O(P)  + B P I .  
P 

This proves (3.8,). 
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3.5. . .  

As a corollary of the results (3.8) we have the following result: 

@O(P) = iy [Fo(B) -PPI 

@(PI = i;f [ F ( B )  - PPI. 
and 

(3 .10~)  

(3.10b) 

This is a simple consequence of (3.8) and the fact that -@O(p) and - @ ( p )  are convex 
functions. The result (3.10) is then a simple application of theorem V I 5 3  (e) in Ellis (1985). 
The result (3.10) is also the reason why we call #O(p) and @ ( p )  Legendre transforms of 
Fo(B)  and FW. 

3.6. 

The main result in this paper will be to prove theorem 1. This result will be proved in the 
next section and will be based on the following lemma. 

L e m m  2. Let Fo(@), F ( B ) ,  @O(p) and @ ( p )  be as defined above, then the following 
equivalence holds: 

F ( B )  > FOW 

@(PI > 

VB < 00 

vo 6 P < 1. 

iff 

Proof. 
(i) Let 

@(PI > V r I 6  P < 1 

or 

@(P) +BP > 4%) + B P  vo 6 P < 1 .  (3.11) 

The left- and right-hand side of (3.11) are both bounded functions on the interval [O, I]. 
Thus, they reach their supremum in [0,1]. Because of lemma 1, the supremum is reached 
in 10, l), and so from (3.11) 

where we used (3.8). 
(ii) Similarly, let 

(3.12) 

Again, because, these functions are bounded on any finite interval, they reach their 
infimum. From (2.29) it follows that the infimum is reached for finite B so that it follows 
from (3.10) and (3.12) that 

@(PI > @O(P) .  

As a consequence of lemma 2, a proof that @ ( p )  > @O(p) will imply that a(,5') > 0. 
Such a proof will be given in the next section. 
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4. Proof of theorem 1 

We will prove tkeorem 1 by showing that q5O(p) < q5(p) if 0 < p < 1. 

Proof. (i) For any rational p ,  consider qn(pn) for f l  E I,. A special subset of the polygons 
in e with n + 1 vertices and pn + 1 contacts is formed by those polygons which are a 
concatenation of a polygon of p n  + 1 vertices in the plane z = 0 with a polygon of n - pn  
vertices with all z > 1. Consequently, 

qn(pn)  > rpnqn4n-pn+l(l) (4.1) 

where rpn is the number of ( p n  + l ts tep polygons in Q which have ( p n  + 1) contacts. 
The factor qn-pn+l(l) stems from the fact that from each polygon of n - pn  steps with 
z > 1 we can make a polygon of n - p n  + 2 vertices and two contacts. The arguments in 
subsection 2.2 and 2.3 can now be repeated to show that 

1 
lim - log r, = log pz . 

n-m n (4.2) 

Taking logarithms in <4.1), dividing by n and sending n + 63 through 1, we get (note: 
n E I,  n E I I - ~ )  

I 1 
lim - logr,, + (1 - p )  lim 10gqn-p"+1(1) 

Pn-m np n - m  n(1- p )  

=plogp2+( l -P )F( j ?=o) .  

Using equation (2.16) finally gives 

4(P) > p log f i z  + (1 - P)logp3. (4.3) 

(ii) Secondly, we seek an upperbound to #'(p). To find this, we decompose each 
polygon in in 'trains' (which are consecutive steps which are contacts) and 'hoops' 
(which are consecutive steps which are not contacts). Let there be t trains (f 1). For 
polygons we have necessarily that the number of hoops, h, must equal t (if h > 0). We 
write 

(4.4) 

where q:(pn; t ,  h)  is the number of n step unknotted polygons in Q which have pn  contacts, 
t trains and h hoops. This sum can be further decomposed by indicating the number of 
steps m i ,  . . . ,mi in each of the trains, and the number of steps ml,  . . . , mh in the hoops. 
In an obvious notation 
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To get an upper bound consider all trains and hoops as independent and forget the 
constraint t = h for h t 0 and the constraint that the full polygon should be in Q. 

(4.6) 

where hzi  is the number of unknotted hoops of mi vertices (of course xi mi = (1 - p)n)  
and &, is the number of trains with mj vertices (x.m’- = pn + 1). We can now use 
Kesten’s bound (Kesten 1964) on the number of self-avoiding walks to find upper bounds J 1 .  

for tLJ 

t~~ < w? exp[o(m;)l. (4.7) 

The number h i t  can be bounded from above by the number cE( which gives the number 
of SAWS of mi steps which do not contain a trefoil. Because a SAW is not a Jordan curve 
one has to take care in defining a concept of (un)knottedness for it. This problem has been 
discussed by Sumners and Whittington (1988) and Janse van Rensburg eta1 (1992). Using 
the results of these authors, we arrives at 

h i ,  d c i ,  < py expK (mi)] (4.8) 

where p i  is a connective constant for SAWS which do not contain a (tight) trefoil. Finally, 

(4.9) 

where PD(n) is the number of partitions of n into integers (which do not have to be distinct). 
From Hardy and Ramanujan (1917) 

PD(n) = - W 3 n  1 e x p [ z g + o ( n ) ] .  (4.10) 

Putting the results (4.7H4.10) into (4.6) gives 

p n  n-pn 
&pn) < p2 pi ~XP[S (n)l 

from which finally 

@%) < plogfiz 4- (1 - p)~og!LUi.. (4.1 1) 

(iii) Finally, using Kesten’s pattern theorem, it follows from the work of Sumners and 
Whittington (1988) that 

10gPLi < lOgW3. (4.12) 

Hence, from (4.3), (4.11) and (4.12) we get 

< b(p) 

which prooves theorem 1. 
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5. The complexity of knots 

5.3. 

In the previous sections, we have investigated the problem of whether or not polymers 
adsorbed onto a surface contain a knot. Intuitively one suspects that as a polymer gets 
absorbed it will at first become more entangled and hence some appropriate measure of 
knot complexity will increase. In this section we study this question rigourously. We 
therefore first need an appropriate definition of knot complexity. First we remind the reader 
that any complicated knot K can be uniquely decomposed into prime knots (see, e.g. Adam 
1994). We write 

K = K 1 # . . . # K ,  

where the operation # represents knot product. A good measure of h o t  complexity is 
intuitively any number that can be associated to a knot and that increases as the knot gets 
more complicated; secondly we demand that when a complicated knot is composed of, for 
example, r trefoils together with other knots, that its complexity should at least be larger 
than r times the complexity of a trefoil. More precisely, Soteros et a1 (1992) define a good 
measure of knot complexity as a function M from the set IC of (equivalence classes of) 
knots K on to [O, 00) which satisfies; (i) M(unknot) = 0, (ii) there exists K E K such that 
M(nK#L)  > n M ( K )  > 0, V L  E IC. Examples of such measures of complexity are crossing 
number, span of any nonaivial Laurent knot polynomial or the log of the order of a knot, 
etc. By the order of a knot we mean IAx(-l)l where A,@) is the Alexander polynomial 
of the knot. For these measures the trefoil 31 has the property M(n31) > nM(31) =- 0. 

In the following M, will be any of these good measures of knot complexity. It was then 
shown by Soteros et a1 (1992) that for all n which are large enough, all but exponentially 
few SAPS have an M-complexity which exceeds Sn where S is some constant (we will be 
more precise below). In the following we will extend this result to SAPS attached to a surface 
where now S will depend on B.  

5.2. 

Let p i ( m )  be the number of n-step polygons with m contact which contain at most LnAJ 
trefoils (here LxJ denotes the largest integer less then or equal to x ) .  Then. using arguments 
similar to those in section 2 it can be shown that 

exists. Furthermore, we can introduce a function @ ( p )  which can then be shown to be the 
Legendre transform of F*(p) ,  i.e. 

&P) = $f [F*(B) - PSI. (5.2) 

Finally, lemma 2 can be extended to show that F ( @ )  > F A ( @ )  V p  < w, iff 
4 ( p )  > &p) VO < p < I. we  now state the following theorem. 



3698 C Vanderzande 

Theorem 2. There exists a postive number 5 such that 

u'(B) = F ( p )  - F'(B) > 0 vp < Co. 

That is, for sufficiently large n, the trefoil appears at least lntJ times in all but 
exponentially few n-sm.  

Pro@. Here we give only a brief outline of the proof. Using arguments similar to those 
in section 4, one can arrive at the following upper bound for &p): 

@'(P) < P log P2 f (1 - P) 1% PA (5.3) 

where is a connective constant for SAPS in which the tight trefoil appears at most LnhJ 
times. From the work of of Sumners and Whittington (1988) i t  follows (see also theorem 2.3 
in Soteros er al  1992) that there exists a positive number 5 such that 

1% PI < log P3 . (5.4) 

Combining equations (5.4), (5.3) h d  (4.3) then leads to the result that there exists a 5 
such that 

@'(PI < @(P) (5.5) 

which then proves the theorem, using the above-mentioned extension of lemma 2. 

5.3. 

Now let M be a good measure of knot complexity and let M ( T )  be its value for the trefoil. 
Then, let E:@) be the average M complexity of all n-step SAP, i.e. 

where the sum is performed over all n-step SAPS W with complexity M ( W )  and with m(W)  
contacts. 

Then the following theorem holds. 

Theorem 3. There exists a positive integer n r  such that for sufficiently large n > n r  

Proof. Take t as in theorem 2, and take nT such that L(n7 - 1)tJ = 0 and ln~{J  = 1. 
Then for n =. ET, the sum in the nominator of (5.6) can be split into a sum over SAPS W, 
which contain less then LncJ trefoils and a sum over SAPS W2 which contain more than 
Ln{] trefoils. For a good measure of complexity, one has 

M(nT#L) 2 nM(T) 
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and thus we get (dropping the walks WI) 

> M ( T )  - - 1  [1 (n: 1 
where we have used theorem 2. Finally because d ( p )  > 0 we know that there exists a 
y ( p )  such that 

(5.7) 

This proves the theorem &d gives an explicit form for S ( B ) . ~  
The result (5.7) seems to suggest that for sufficiently large n we can expect that 

E:(@) - n'. (5.8) 

Numerical work (Janse van Rensburg er al 1992) gives the result that for non-interacting 
SAWS and SAPS, t = 1. Interpreting t as a critical exponent leads one to expect that its value 
can change when one passes through a critical point and thus its value may be different in 
the phase where the polymer is adsorbed (above 6,). This is very consistent with theorem 3 
which only gives a lower bound for T. On the other hand, numerical work of Janse van 
Rensburg er af (1992) gives indications that 5 does not change at the &point of the SAP- 
model. One can eventually argue that critical exponents are determined by local properties 
and that there exists a class of global (topologica1)~exponents that may be independent of 
such local 'details'. The possibility of the existence of superuniversal topological exponents 
is very interesting as it could lead to a change in the usual classification of universality 
classes. We are currently performing numerical calculations of the knot complexity in the 
adsorbed phase to get further insight into these issues. 

6. Discussion 

In this paper we have discussed some topological properties of a model for the adsorption 
of ring polymers. In our model there is a short-range attraction between the surface and 
monomers. We have found that, for all non-zero temperatures, a properly defined unknot 
probability (which takes into account Bolmann weights) goes to zero exponentially fast in 
the length n of the polymer. Any good measure of knot complexity is found to increase at 
least linearly in n with a proportionality factor which depends on temperature. We have made 
conjectures on the temperature dependence of some of the functions occurring in our results. 
We have also discussed the possibility of a change in the exponent T occurring in (5.8). In 
a forthcoming paper we will verify these conjectures using numerical calculations. It also 
seems possible to prove the conjecture (2.30) using reasoning similar to that in Hammersley 
et a! (1982). 

The techniques which we have used here can most likely also be used to prove results 
about the knot probability for polygons undergoing a 8-transition, or to study the behaviour 
of a geometrical quantity such as the writhe (see, e.g. Janse van Rensburg et al 1993) for 
polymers attached to a surface. 
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As for applications, it is by now well established that hots occur in the DNA of some 
organisms, such as bacteriophages. On the other hand, looking at the organization of DNA 
in cells, it is known that DNA is attached to large proteins (histones) to form chromosomes. 
While the surfaces of these proteins are definitely not flat, and our model of a ring polymer 
is certainly too simple to describe DNA, the present study may be considered as a first 
humble step towards a physical understanding of the topological behaviour of DNA in such 
structures as chromosomes. A further step that can be considered is to extend the present 
work to more realistic models of DNA-like molecules such as the recently introduced lattice 
ribbons (Janse van Rensburg et al 1994). 
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